SYNTHESIS OF 3-HALOBENZYL-4-HYDROXYCOUMARINS AND THEIR HYDROL-YSIS ### L. P. Zalukaev and M. P. Aleksyuk Khimiya Geterotsiklicheskikh Soedinenii, Vol. 4, No. 6, 965-966, 1968 ### UDC 547.812.5'814.1.07:542.938.953 The thermal condensation of halobenzylmalonic esters with phenol has given a series of 3-halobenzyl derivatives of 4-hydroxycoumarin. Alkaline hydrolysis, with simultaneous decarboxylation, gives the corresponding o-hydroxy-\(\beta\)-halophenylpropiophenones. We have previously used the thermal condensation of monosubstituted malonic esters with phenols [1] in the synthesis of various derivatives of 4-hydroxycoumarin [2]. The reaction mentioned may also be used in the synthesis of a series of 3-halobenzyl-substituted 4-hydroxycoumarins: $$\begin{array}{c} OH \\ + CHR(COOC_2H_5)_2 \longrightarrow \\ O \\ \hline \end{array} \begin{array}{c} OH \\ + 2C_2H_5OH \end{array}$$ The reaction conditions and the constants of the products obtained are given in Table 1. Compounds I-VI were subjected to alkaline hydrolysis and simultaneous decarboxylation: $$\bigcap_{OH}^{OH} \bigcap_{OH}^{O-C-CH_2R}$$ The characteristics of the o-hydroxy- β -halophenyl-propiophenones obtained are given in Table 2. ## EXPERIMENTAL The o-, m-, and p-bromobenzyl bromides were obtained by brominating the corresponding bromotoluenes, and the o-, m-, and p-chlorobenzyl chlorides by chlorinating the chlorotoluenes [3]. The halobenzylmalonic esters were obtained by the alkylation of sodiomalonic ester with alkyl halides [4] (Table 3). The thermal condensation of the halobenzylmalonic esters with phenol was done in the apparatus described previously [5]. A 100-ml flask was charged with 0.05 mole of the halobenzylmalonic ester and 0.1 mole of phenol. The mixture was heated in an oil bath from about 150° C to the condensation temperature over 2 hr. After completion of the decomposition reaction, the mixture was poured into a beaker containing toluene. The precipitated coumarin crystals (I-VI) were filtered off using suction, washed with toluene, and recrystallized from ethanol. The o-hydroxy- β -halophenylpropiophenones (VII-XII) were each obtained by boiling 20-22 g of the appropriate coumarin with 600 ml of a 12% KOH solution over a period of 18-24 hr. To terminate the reaction, the solution was cooled and saturated with CO₂. The precipitated hydroxy ketone (VII-XII) was extracted with toluene, the extract was dried over MgSO₄, the toluene was evaporated, and the residue was distilled under a vacuum. The hydroxy ketones were recrystallized from petroleum ether. ### REFERENCES - 1. C. Mentzer and P. Vercier, Mon., 88, 264, 1957. - 2. L. P. Zalukaev and M. P. Aleksyuk KhGS [Chemistry of Heterocyclic Compounds], 1, 139, 1965; M. P. Aleksyuk, A. I. Shcherban, and L. P. Zalukaev, KhGS [Chemistry of Heterocyclic Compounds], 2, 176, 1966. - 3. General Practical Handbook of Organic Chemistry [Russian translation], Mir, p. 142, 1965. - 4. Organic Synthesis [Russian translation], IL, Moscow, 3, 435, 1952. - 5. L. P. Zalukaev and M. P. Aleksyuk, Biologically Active Compounds [in Russian], Nauka, Moscow-Leningrad, p. 139, 1965. - 6 September 1966 Voronezh State University Voronezh Technological Institute Table 1 3-Halobenzyl-4-hydroxycoumarins | Com-
pound | R | Mp, °C | Condensa-
tion temper-
ature, °C | Conden-
sation
time, hr | Found, %* | | | | |---------------------------------|--|--|--|-------------------------------|--|--|--|--| | | | | | | С | Н | Hal | Yield,
% | | I
II
III
IV
V
VI | o-BrC ₆ H ₄ CH ₂
m-BrC ₆ H ₄ CH ₂
p-BrC ₆ H ₄ CH ₂
o-ClC ₆ H ₄ CH ₂
m-ClC ₆ H ₄ CH ₂
p-ClC ₆ H ₄ CH ₂ | 244
217.5
252
239.5
212
239.5 | 296—299
289—291
288—291
289—293
279—283
280—283 | 7
6
7
8
8 | 58.01
58.18
58.08
67.14
67.09
67.16 | 3.44
3.26
3.37
3.85
3.92
3.81 | 24.30
24.18
24.15
12.32
12.26
12.12 | 73.5
80.3
71.0
80.3
62.7
82.0 | ^{*}For compounds I-III, calculated for $C_{16}H_{11}BrO_{3}$,%: C 58.02; H 3.35; Br 24.13; for compounds IV-VI, calculated for $C_{16}H_{11}ClO_{3}$,%: C 67.02; H 3.88; Cl 12.36. $\label{eq:Table 2} % \begin{center} \begin{center} $\mathsf{Table 2} \\ \begin{center} \begin{center} \mathsf{o-Hydroxy-}\beta-\mathsf{halophenylpropiophenones} \\ \end{center} \end{center}$ | Com-
pound | R | Mp,
°C | Bp, ^o C (mm) | Found, %* | | | Yield, | |-------------------------------------|--|--|---|--|--|--|--| | | | | | С | Н | Hal | % | | VII
VIII
IX
X
XI
XII | $\begin{array}{l} \text{o-BrC}_6\text{H}_4\text{CH}_2\\ \text{m-BrC}_6\text{H}_4\text{CH}_2\\ \text{p-BrC}_6\text{H}_4\text{CH}_2\\ \text{o-ClC}_6\text{H}_4\text{CH}_2\\ \text{m-ClC}_6\text{H}_4\text{CH}_2\\ \text{p-ClC}_6\text{H}_4\text{CH}_2\\ \end{array}$ | 53
40.5
79.5
59.5
35
63.5 | 163—165 (1.4)
163—164 (1.4)
166—167 (~0.5)
144—145 (~1)
176—177 (2.5)
158—159 (~1) | 59.47
59.09
59.18
69.03
69.17
69.19 | 4.19
4.26
4.22
5.06
5.18
5.11 | 26.21
26.18
26.24
13.50
13.46
13.53 | 94.5
91.2
90
86.8
85.3
86.6 | ^{*}For compounds VII-IX, calculated for $C_{15}H_{13}BrO_2$, %: C 59.03; H 4.30; Br 26.18; for X-XII, calculated for $C_{15}H_{13}ClO_2$, %: C 69.09; H 5.04; Cl 13.60. Table 3 Halobenzylmalonic Esters | Compound | Bp, °C (mm) | Yield,
% | |---|------------------|-------------| | o-BrC ₆ H ₄ CH ₂ CH (COOC ₂ H ₅) ₂ | 179—179.5 (8) | 71.4 | | m-BrC ₆ H ₄ CH ₂ CH (COOC ₂ H ₅) ₂ | - 135—137 (1.5) | 65.5 | | ρ-BrC ₆ H ₄ CH ₂ CH (COOC ₂ H ₅) ₂ | 164—165 (2.6) | 60.0 | | o-ClC ₆ H ₄ CH ₂ CH (COOC ₂ H ₅) ₂ | 105—106.5 (~0.5) | 68.0 | | m-ClC ₆ H ₄ CH ₂ CH (COOC ₂ H ₅) ₂ | 163—166 (6.5) | 83.7 | | ρ-ClC ₆ H ₄ CH ₂ CH (COOC ₂ H ₅) ₂ | 147—149 (2.3) | 62.0 |